
UCRL-WEB-200945

MPI Parallelization Problems and Solutions

MPI Parallelization Problems and Solutions - 1

Table of Contents

Preface 4
Introduction 5
Parallelization Effects 6

Amdahl's Law 6
Effective Bandwidth 6
Speedup 6

Parallelization Strategies 7
Basic Parallelization Steps 7

Tune 7
Profile 7
Choose Techniques 8
Deploy Techniques 8

Troubleshooting 9
Performance Measurements 9

Parallelizing I/O Operations 11
Input Cases 11
Output Cases 12

Parallelizing DO Loops 13
Distributing Iterations Among Processes 13

Block Distribution 13
Cyclic Distribution 13
Block-Cyclic Distribution 13

Using Extra (Per-Node) Memory 14
Parallelizing Nested Loops 14

Message Passing 15
No Order Dependencies 15

Broadcast of a Single Element 15
1-D Finite Difference Method Parallelized 15
Bulk Data Transmissions 16

Gathering Data to One Process 16
Synchronizing Data 17
Transposing Block Distributions 17

Reduction Operations 18
General Reduction 18
Superposition 18

Order Dependencies 19
Nested Loops 19

Pipeline Method 19
Twisted Decomposition 19

Nonnested Loops 20
Prefix Sum Method 20

Advanced MPI Programming 21
2-D Finite Difference Method 21

MPI Parallelization Problems and Solutions - 2

Finite Element Method 21
LU (Lower-Upper) Factorization 21
SOR (Successive Over-Relaxation) Method 21
Monte Carlo Method 21
Molecular Dynamics 22
MPMD Models 22
Parallel ESSL (Dropped) 23
Multifrontal Method 23

MPI Performance Benchmarks 24
MPI Online Bibliography 25
Disclaimer 34
Keyword Index 35
Alphabetical List of Keywords 37
Date and Revisions 39

MPI Parallelization Problems and Solutions - 3

Preface

Scope: Drawing on the analysis presented by Aoyama and Nakano in IBM's redbook called
"RS/6000 SP Practical MPI Programming" (SG245380), (URL:
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245380.pdf) this document
gives a systematic overview, in outline form, of the programming problems
encountered on massively parallel distributed-memory computers (such as the IBM
SP). For each such problem, the solution(s) offered by, or sometimes required by, the
standard MPI (message-passing interface) library are briefly described and compared
(especially in light of the circumstances where each solution applies). This document
is not intended to be a comprehensive explanation of every MPI problem and solution
(that is the role of redbook SG245380), but rather a clear analytic framework for
surveying the field of distributed-memory parallel programming and for organizing
the many isolated treatments of MPI spread around the World Wide Web (and
elsewhere).

Availability: At LLNL, the MPI library is available on all LC production machines. The pathname
is /usr/lib/libmpi.a on AIX clusters. This library is in /usr/lib/mpi/lib/libmpi.a on LC's
Linux machines.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

OCF: http://www.llnl.gov/LCdocs/mpi/mpi.pdf
SCF: https://lc.llnl.gov/LCdocs/mpi/mpi_scf.pdf

MPI Parallelization Problems and Solutions - 4

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245380.pdf
http://www.llnl.gov/LCdocs/mpi/mpi.pdf

Introduction
The standard message-passing interface (MPI) library is a way to share data among parallel processes

running on distributed-memory massively parallel computers. This summary document provides a logical
framework for finding solutions to parallel processing problems, especially those featuring MPI in complex
applications. Its (online) table of contents presents a concise outline of those parallelization problems and
their MPI solutions.

Every mention of a specific MPI routine here links to that routine's (MPICH) man page (on another
LC web server) for easy review of its calling sequence and usage details. One section introduces LLNL's
own C-language benchmark suite (Sphinx) for performance testing of MPI on local machines. And a
selected bibliography (page 25) at the end summarizes and links to the best free MPI references available
online. Future versions will also include (more) solution summaries and links to related MPI material on
other sites worldwide organized within the same framework for ease of use.

Unfortunately, IBM's own very useful message-passing manual (redbook) called "RS/6000 SP Practical
MPI Programming" (SG245380) (URL: http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245380.pdf)
is only available online as one gigantic (238-page) PDF file. So we cannot link directly to its relevant
sections and examples from this outline. But this summary document will still grow into a helpful way to
organize and find the MPI resources now scattered confusingly around the Internet.

A more fine-grained approach to parallel computing involves creating independent "threads" of execution
(POSIX threads or pthreads) within one process rather than passing messages among many separate
processes. This alternative may be more efficient but is often more complex to program. See the separate
local manual called "Pthreads Overview (for LC)" (URL: http://www.llnl.gov/LCdocs/pthreads) for a
survey of its known benefits and problems.

The document you are now reading focuses on designing good MPI parallel programs. For instructions
on how to actually manage, compile, and then execute those parallel programs on the ASCI IBM machines,
see the separate POE User Guide (URL: http://www.llnl.gov/LCdocs/poe) (which introduces the key
features of IBM's Parallel Operating Environment). For additional advice on efficient I/O for scientific
applications at LC and the use of LC's parallel file systems, some of which involves special MPI library
routines, see also the I/O Guide for LC. (URL: http://www.llnl.gov/LCdocs/ioguide) A glossary of MPI
acronyms (and a few terms) appears as part of the "MPI at LLNL" (URL:
http://www.llnl.gov/computing/mpi/index.html) web site, discussed in the Bibliography section at the end
of this manual. For an analysis of how best to use the environment variable LD_LIBRARY_PATH on
LC's Linux/CHAOS machines to manage access to MPI libraries, especially for nonstandard MPI library
versions or MPI use in batch jobs, see the "LD_LIBRARY_PATH Details" section (URL:
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.5) of LC's Environment Variables user guide. (Many
other environment variables discussed in that guide also affect MPI performance on LC machines, especially
on unusual machines such as Purple or BlueGene/L.) For details on invoking the MPIRUN job-control
tool, see MPIRUN for BlueGene/L (URL:
http://www.sdsc.edu/user_services/bluegene/docs/mrirun_manual.pdf), a 38-page user guide prepared by
IBM's Haifa Research Labs.

MPI Parallelization Problems and Solutions - 5

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245380.pdf
http://www.llnl.gov/LCdocs/pthreads
http://www.llnl.gov/LCdocs/poe
http://www.llnl.gov/LCdocs/ioguide
http://www.llnl.gov/computing/mpi/index.html
http://www.llnl.gov/LCdocs/ev/index.jsp?show=s3.5
http://www.sdsc.edu/user_services/bluegene/docs/mrirun_manual.pdf

Parallelization Effects

Amdahl's Law
If p is the fraction of your program that can be parallelized (and 1-p is the fraction that cannot), and if

you run it on n processors, then the ideal parallel running time will be

 ((1-p) + p/n)(serial running time)

This suggests the importance of carefully idenifying the fraction of your code that can be parallelized,
since it sets a limit on improvements in how fast the parallelized program will run.

Effective Bandwidth
The effectiveness of parallelization also depends on how well the program's many processes

communicate with each other. Effective bandwith is one way to collectively assess the many factors that
influence interprocess communication. See Cherri Pancake's paper "Is Parallelism for You?" in the suggested
bibliography (page 25) for an excellent, illustrated online treatment of this issue.

Speedup
Two general strategies promote speedup of your parallelized program:

• decrease the amount of data sent between processes, and

• decrease the number of times that you send the data.

Many sections below spell out specific MPI techniques for carrying out these general speedup strategies.

MPI Parallelization Problems and Solutions - 6

Parallelization Strategies
The next subsections give a step by step analysis to help systematically pick and deploy parallelization

solutions as problems are encountered.

Basic Parallelization Steps

Tune

Tune the serial program, especially the "hot spots" with high CPU use, before you bother to parallelize
at all.

Profile

Study the profile of the serial program to begin parallelizing the most CPU-intensive parts (first, and
perhaps only those). Two factors, time use and work distribution, should influence your choice of places
to parallelize. Assess:

The UNIFORMITY of CPU-time use

NONUNIFORM:
If most CPU time is consumed by a small part of the code, then consider only partial
parallelization of the relevant DO loop.
UNIFORM:
If several subloops contribute almost equally to the total run time, then plan to
parallelize throughout the whole DO loop.

The likely BALANCE of work among processes

When picking the grain size at which you will parallelize your subroutines, remember
the likely effect of your choice on the distribution of work among processes, as this
chart shows:

 Distribution of work
 Balanced Unbalanced

 Grain size of |
 subroutines Coarse| Likely
 parallelized | (few statements
 | rewritten)
 Fine |Likely
 |(many statements
 |rewritten)

Once you start testing an MPI-based parallel version of your code, you can benefit from using mpiP,
a "lightweight profiling library" specifically for MPI applications. The mpiP profiler on LC's AIX (IBM)
machines:

• has been customized to handle long file names and function names,

MPI Parallelization Problems and Solutions - 7

• generates much less overhead, less between-task communication, and less total data than most
heavy-duty tracing tools, and

• has a local documentation file available on each AIX node at /usr/local/tools/mpiP/README.

Choose Techniques

Determine the most appropriate parallelization techniques for your code:

(A) What kind of distribution (page 15) of data is needed?

(B) What data needs to be sent among processes?

(C) Is it appropriate to "shrink arrays" (page 14) as you parallelize?

(D) Is it more efficient to use PESSL (page 23) routines or to develop your own?

Deploy Techniques

On the basis of this analysis, deploy the parallelization techniques described (later) in this document
and elsewhere.

Also keep in mind that you can assist your parallelization by using:

• MODULE statements of Fortran90--to simplify passing arguments during parallelization.

• Incremental parallelization--that is, parallelize loops step by step "from top to bottom" instead of all
at once, to make debugging easier when the inevitable mistakes occur.

• Default MALLOC variable settings--
Before CHAOS 2.0, some users intentionally unset the environment variables
MALLOC_MMAP_MAX and MALLOC_TRIM_THRESHOLD on LC's Linux clusters to improve
performance. Under current versions of CHAOS, unsetting these variables causes run-time problems,
however. So except on Thunder you should use the default (preset) MALLOC environment variable
values for MPI codes running under Linux.

• MPIRUN with the -env option--
On BlueGene/L, MPIRUN-executed jobs only have access to those environment variables whose
values you explicitly declare with MPIRUN's own -env option. For -env's quoted argument string,
use a blank-delimited list of variable=value equations.

MPI Parallelization Problems and Solutions - 8

Troubleshooting
The four typical problems when running a newly parallelized program are that the program:

• does not start,

• ends abnormally,

• starts but becomes inactive, or

• gives the wrong answer.

This section will eventually summarize the likely causes for each such symptom.

Performance Measurements
IBM ISSUES.

As of April, 2002, LC's massively parallel IBM computers sometimes showed significant performance
problems for MPI programs, especially for those programs that (heavily) use library routines
MPI_ALLREDUCE or MPI_BARRIER. One production physics code where MPI_ALLREDUCE was
algorithmically expected to use about 1.9% of the total run time, for example, actually spent 90% of its
MPI time and 30% of its physics time just executing MPI_ALLREDUCE. Extensive comparative testing
by LC staff members suggests that the following kinds of codes are most susceptible to these serious
performance problems:

• Parallel codes with fine-grained parallelization,

• Hybrid codes that combine MPI with OpenMP or with POSIX threads (Pthreads), and

• Codes that make heavy use of MPI_ALLREDUCE or MPI_BARRIER.

Users who see (or who wish to avoid) these problems are urged to profile their codes by running
/usr/local/mpiP and to read the "IBM Confidential" analysis available at (OCF, special password required,
request from the LC Hotline):

http://www-r.llnl.gov/icc/viewgraphs/viewgraphs02/apr02/jones/index.htm

for more details and for a few suggestions to work around them. By summer, 2003, IBM and LLNL staff
had agreed that latent serial steps deep within AIX parallel operations were a primary cause of these
performance problems. For an updated analysis and repair strategy, see

http://www-r.llnl.gov/icc/viewgraphs/viewgraphs03/aug/jones/jones.pdf

ENVIRONMENT VARIABLES.
Many environment variables (some quite unusual or with unusual roles on very large LC machines) also
affect MPI program performance at LC. Most have names that begin with the string MP_ (LDR_CNTRL
and MEMORY_AFFINITY are exceptions). See the Environment Variables reference manual (URL:
http://www.llnl.gov/LCdocs/ev) for details, comparisons, and LC-relevant setting suggestions. On large
AIX systems, pay special attention to how you set these environment variables:

MPI Parallelization Problems and Solutions - 9

http://www-r.llnl.gov/icc/viewgraphs/viewgraphs02/apr02/jones/index.htm
http://www-r.llnl.gov/icc/viewgraphs/viewgraphs03/aug/jones/jones.pdf
http://www.llnl.gov/LCdocs/ev

• MP_TASK_AFFINITY and MEMORY_AFFINITY (especially on machines such as Purple that
have MCMs, "multichip modules").

• MP_BULK_MIN_MSG_SIZE and MP_USE_BULK_XFER (to efficiently exploit remote direct
memory access (RDMA) on Purple.)

• LDR_CNTRL (to manage large memory pages, good for memory-intensive MPI jobs).

NUMA HARDWARE.
Many of the Linux/CHAOS clusters that LC bought starting in 2006 (such as Atlas and Zeus) have hardware
with "nonuniform memory access" (sometimes called nonuniform memory architecture), always abbreviated
NUMA. Starting with release 3.2 in 2007, the CHAOS operating system includes features and supports
tools to improve MPI-code performance on such NUMA hardware. Among those tools are:

• TASKSET (URL: http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2.1), which lets you link
a specified process or command to a specified NUMA CPU to avoid the overhead of moving it.

• NUMACTL (URL: http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2.2), which reports total
and free memory on each "NUMA node" and lets you demand local memory allocations for greater
efficiency.

• NUMA-MAPS (URL: http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2.3), which reports
heap, stack, and full NUMA-node memory use to help with job planning.

See the "For Users of NUMA Nodes" section (URL:
http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2) of LC's CHAOS reference manual for more
explanation of how NUMA hardware features can affect MPI job performance.

MPI Parallelization Problems and Solutions - 10

http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2.1
http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2.2
http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2.3
http://www.llnl.gov/LCdocs/chaos/index.jsp?show=s5.2

Parallelizing I/O Operations

Input Cases
For a massively parallel program, there are three ways to handle data input among the many processes:

(1) All processes read the same input file from a shared file system (if there is one).

(2) All processes have a local copy of the input file before computation starts.

(3) One process reads the input file and distributes it to the others using appropriate MPI library routines:

• MPI_BCAST (URL: http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Bcast.txt)--used to
spread all data to all processes.

• MPI_SCATTER (URL: http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Scatter.txt)--used
to spread only relevant pieces of data to the processes that need them.

For suggestions on parallel reading from HDF5-format "self-describing" scientific data files, see the
"HDF5 Operations" section of the I/O Guide for LC. (URL: http://www.llnl.gov/LCdocs/ioguide) See also
the next subsection (on output) for more related suggestions and references.

MPI Parallelization Problems and Solutions - 11

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Bcast.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Scatter.txt
http://www.llnl.gov/LCdocs/ioguide

Output Cases
OUTPUT STRATEGIES.

For a massively parallel program, there are three ways to handle data output from among the many processes:

(1) All processes write to standard output (the default). This generates many relatively small output
files, which parallel file systems (see below) distribute among many devices for automatic load balancing.

(2) One process gathers all the data and writes it to a local file. The appropriate MPI library routine
for this approach is MPI_GATHER (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Gather.txt).

(3) Each process writes its data sequentially to a shared file. Use routine MPI_BARRIER (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Barrier.txt) to synchronize the processes and avoid
data corruption.

For suggestions on parallel writing to HDF5-format "self-describing" scientific data files, see the "HDF5
Operations" section of the I/O Guide for LC. (URL: http://www.llnl.gov/LCdocs/ioguide)

PARALLEL FILE SYSTEMS.
Computer systems with special parallel file-system hardware (such as IBM's General Parallel File System
(GPFS) on AIX clusters or the Lustre parallel file system on Linux/CHAOS clusters at LC) enable the use
of the MPI-IO parallel I/O interface, an extension to the original MPI library. With MPI-IO, many nodes
can not only write at the same time, but they can write to different parts of the same logical file
simultaneously. In fact, using MPI-IO to a standard globally mounted file system such as /nfs/tmpn will
actually degrade I/O performance for all users of that file system across all the machines where it is mounted.

For a summary of the positioning, synchronism, and coordination issues involved with using MPI-IO
on parallel file systems, see the MPI-IO section of the I/O Guide for LC (URL:
http://www.llnl.gov/LCdocs/ioguide). For full technical details on the MPI-IO library routines (and naming
conventions), see this specific part of the MPI Forum web site:

http://www.mpi-forum.org/docs/mpi-20-html/node186.htm

Note that different parallel file systems interact differently with the MPI-IO library extensions:
(1) For some I/O operations, GPFS outperforms Lustre, while for other operations Lustre performs much
better than GPFS does. So expect the unexpected with application code performance if you move from
one parallel file system to a different brand, even among LC machines.
(2) Always check the exit codes returned to your application after each read from or write to a parallel file
system. Some reveal harmless between-brand behavior differences, while others betray file corruption.
(3) See the section on Lustre's interaction with MPI-IO (URL:
http://www.llnl.gov/LCdocs/ioguide/index.jsp?show=s7.4.3) in the I/O Guide for LC for more details. See
also the discussion (URL: http://www.llnl.gov/LCdocs/ioguide/index.jsp?show=s7.4.5) in the I/O Guide
of how Lustre "stripes" files across multiple storage devices, since striping (which you can somewhat
control) interacts with parallel I/O performance.
(4) Starting with CHAOS 3.2 in 2007 (Lustre 1.4.8), the SLURM epilog script flushes the Lustre page
cache (both clean and dirty pages) after every job to enable the next job to avoid I/O interference.

MPI Parallelization Problems and Solutions - 12

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Gather.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Barrier.txt
http://www.llnl.gov/LCdocs/ioguide
http://www.llnl.gov/LCdocs/ioguide
http://www.mpi-forum.org/docs/mpi-20-html/node186.htm
http://www.llnl.gov/LCdocs/ioguide/index.jsp?show=s7.4.3
http://www.llnl.gov/LCdocs/ioguide/index.jsp?show=s7.4.5

Parallelizing DO Loops

Distributing Iterations Among Processes
This section describes three solutions to the problem of distributing DO-loop iterations among processes,

which then run the iterations in parallel.

Block Distribution

The block distribution approach divides the DO-loop iterations into p equal-sized parts, where p is the
number of parallel processes. You can either

• Make the parts as evenly sized as possible, so that all processes get the same number of interations.
This allows the use of routine MPI_REDUCE (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Reduce.txt) to manage results afterward.

• Use a specified part size to create the iteration blocks, and leave a remainder (possibly but usually
not zero) for one process. The PESSL library uses this method.

Cyclic Distribution

Cyclic distribution assigns DO-loop iterations to parallel processes one iteration at a time, round robin.
In some situations (e.g., LU factorization) this can balance the workload better than block distribution, but
it can also cause frequent cache misses.

Block-Cyclic Distribution

Block-cyclic distribution assigns DO-loop iterations to parallel processes by first dividing them into
equal-sized blocks and then assigning the blocks to processes round robin, cyclicly. The goal is to reduce
cache misses yet still get the workload balance of cyclic distribution.

MPI Parallelization Problems and Solutions - 13

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Reduce.txt

Using Extra (Per-Node) Memory
On a distributed-memory machine (such as the IBM SP), the total amount of memory grows as you

add more and more nodes to a computation (not the case on shared-memory computers). You can take
advantage of the extra per-node memory you add every time you add a process by either

• Keeping the same problem resolution and computing more data, or

• Keeping the same data and increasing the problem resolution.

The second approach is often very beneficial on practical simulation problems, where you can either

• Shrink arrays--let each process use all of its memory on just a portion of the original array for a finer
resolution, or

• Use the ALLOCATE statement to implicitly assign space at run time if you do not know the size of
the array or the total number of processes before you run the program.

Parallelizing Nested Loops
You can parallelize nested DO-loops in a way that minimizes the communication between processes

as well as the frequency of cache misses if you consider:

• the storage order for multidimensional arrays. Fortran stores such arrays in column-major order, but
C stores them in row-major order.

• the dependence of each element on its neighboring elements in the same row.

• the possible dependence of an element on its neighbors in more than just one dimension too.

MPI Parallelization Problems and Solutions - 14

Message Passing
Message passing is the solution to the (distributed-memory) problem of processes not having the data

they need once computational iterations have been distributed among them. Two basic cases occur (addressed
in the subsections below):

• No order ("loop-carried") dependencies exist among the iterations.

• Order ("loop-carried") dependencies do exist among the iterations that are distributed.

No Order Dependencies

Broadcast of a Single Element

You can broadcast a single crucial data element to all processes in a massively parallel program by
using the MPI library routine called MPI_BCAST (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Bcast.txt).

1-D Finite Difference Method Parallelized

You can parallelize the one-dimensional finite difference method by using MPI_ISEND (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Isend.txt) and MPI_IRECV (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Irecv.txt) to systematically transmit data on the
boundary of a one-dimensional array.

Note that the "I routines" MPI_ISEND (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Isend.txt) and MPI_IRECV (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Irecv.txt) often give better performance on IBM
machines than the standard versions MPI_SEND (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Send.txt) and MPI_RECV (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Recv.txt), but they sacrifice portability to nonIBM
platforms.

MPI Parallelization Problems and Solutions - 15

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Bcast.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Isend.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Irecv.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Isend.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Irecv.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Send.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Recv.txt

Bulk Data Transmissions

Gathering Data to One Process

Gathering data to one process from other processes usually occurs near the end of a parallel program.
There are four distinct cases here that differ in their most appropriate message-passing routines and in how
those routines are applied, as this table shows:

 Data location in memory
 Contiguous Noncontiguous
Send and ---------------------------------
recieve buffers: |
 |
 NO overlap | (1) Use (3) Trivial extension
 | MPI_GATHERV of case (4) below
 |
 DO overlap | (2) Point-to-point (4) Use
 | communication: ALLOCATE, MPI_ISEND,
 | ALLOCATE, MPI_RECV, MPI_WAIT
 | MPI_IRECV,
 | MPI_WAIT

Note that the "I routines" MPI_ISEND (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Isend.txt) and MPI_IRECV (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Irecv.txt) often give better performance on IBM
machines than the standard versions MPI_SEND (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Send.txt) and MPI_RECV (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Recv.txt), but they sacrifice portability to nonIBM
platforms.

MPI Parallelization Problems and Solutions - 16

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Gatherv.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Isend.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Recv.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Irecv.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Wait.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Isend.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Irecv.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Send.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Recv.txt

Synchronizing Data

Synchronizing data means making sure that all processes have up-to-date data at the same time, even
part way through a parallel computation. There are four distinct cases here that differ in their most
appropriate message-passing routines and in how those routines are applied, as this table shows:

 Data location in memory
 Contiguous Noncontiguous
Send and ---------------------------------
recieve buffers: |
 |
 NO overlap | (1) Use [not discussed]
 | MPI_ALLGATHERV
 |
 DO overlap | (2) Use ALLOCATE, [not discussed]
 | MPI_BCAST (or
 | MPI_IBCAST) to
 | broadcast as many
 | times as there are
 | processes

Note that the "I routine" MPI_IBCAST (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Ibcast.txt) often gives better performance on IBM
machines than the standard version MPI_BCAST (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Bcast.txt), but it sacrifices portability to nonIBM
platforms.

Transposing Block Distributions

This technique involves changing the distribution of a matrix (from column-wise block to row-wise
block) during a parallel computation. You need to use MPI_SEND (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Send.txt) and MPI_RECV (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Recv.txt) along with derived data types for each
block.

MPI Parallelization Problems and Solutions - 17

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Allgatherv.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Bcast.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Ibcast.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Ibcast.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Bcast.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Send.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Recv.txt

Reduction Operations

General Reduction

The goal here is to "gather data distributed over [many] processes and do some computation on the
way." Two MPI routines are most relevant:

MPI_ALLREDUCE

is best when every process needs the value of a sum. (See the comments on IBM
performance problems when using MPI_ALLREDUCE, in an earlier section. (page
9))

MPI_REDUCE

is best when only one process needs the value of a sum.

Superposition

Superposition is a way to use MPI_REDUCE (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Reduce.txt) to gather data and to avoid derived
data types or data packing (but at the cost of sending more than the minimum number of transmissions
between processes).

MPI Parallelization Problems and Solutions - 18

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Allreduce.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Reduce.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Reduce.txt

Order Dependencies

Nested Loops

When loops are nested, there are two ways to parallelize order (loop-carried) dependencies: the pipeline
method and twisted decomposition.

Pipeline Method

The pipeline method is the way to parallelize a loop that has a flow dependence, so that each iteration
has to be executed strictly in order. The Incomplete Cholesky Conjugate Gradient Method is an example
of such a situation. Here there is no danger of deadlock.

Twisted Decomposition

This is the way to parallelize when one loop is flow dependent on one dimension of a matrix, and a
second loop is simultaneously flow dependent on the second dimension of the matrix. Here, unlike with
the pipeline method, there is a danger of deadlock.

MPI Parallelization Problems and Solutions - 19

Nonnested Loops

When loops are not nested, parallelization requires a different approach than when they are nested.

Prefix Sum Method

This parallelization technique is suitable for nonnested loops spread over a large number of processes
(it is inefficient when used with only a small number of processes). It involves the MPI routine MPI_SCAN
(URL: http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Scan.txt), and you may extend it to other
data types and operations on them by invoking MPI_OP_CREATE (URL:
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Op_create.txt).

MPI Parallelization Problems and Solutions - 20

http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Scan.txt
http://www.llnl.gov/computing/tutorials/mpi/man/MPI_Op_create.txt

Advanced MPI Programming
This section covers parallel-programming situations that are more complex, and that resemble typical

application programs in the elaborateness of the dependencies they include.

2-D Finite Difference Method
The two-dimensional finite difference method typically involves data dependencies in both dimensions

of an array. Three ways of distributing iterations through the array are possible:

• Column-wise block distribution.

• Row-wise block distribution.

• Block distribution in both dimensions, which can be either
(1) simple, or
(2) complex.

Finite Element Method
The finite element method often involves a more irregular data dependence that other methods, so it

is harder to parallelize successfully. Also, on irregular meshes, the number of assigned nodes may be poorly
balanced among processes if you divide the data evenly in terms of elements.

LU (Lower-Upper) Factorization
LU (lower-upper) factorization solves linear equations with dense matrices by factoring the matrix into

a lower triangular and an upper triangular matrix. IBM's Parallel Engineering and Scientific Subroutine
Library (PESSL) contains subroutines for LU factorization that usually outperform hand-coded solutions.
So you should study the PESSL routines and their section below (page 23) when parallelizing programs
that involve LU factorization.

SOR (Successive Over-Relaxation) Method
The successive over-relaxation (SOR) method solves two-dimensional Laplace equations. When

parallelizing such programs, you must distinguish among three three cases:

• Red-black SOR, which differently "colors" every other element and then updates the red elements
and the black elements alternately.

• Zebra SOR, which colors whole columns alternately, like a zebra's stripes.

• Four-color SOR, which is a generalization of reb-black SOR to handle the case when more neighbors
are involved in updating each element.

Monte Carlo Method
The Monte Carlo method reveals the special problems that arise when you try to parallelize random

number generation and use.

MPI Parallelization Problems and Solutions - 21

Molecular Dynamics
Molecular dynamics involves the "distinct element method," in which only a few of the inner loops

use most of the CPU time. So your parallelization efforts should focus on just those CPU-intensive loops.

MPMD Models
Most of this document's sections apply to SPMD (single program multiple data) parallel programming.

But MPI techniques can also handle cases of MPMD (multiple program multiple data), where different
programs run in parallel and communicate with each other. You toggle between theses cases by using the
environment variable MPI_PGMMODEL, whose value can be spmd (the default) or mpmd.

The "master/worker" approach, where one process (the master) coordinates all the others (the workers)
is the basic way to deal with MPMD.

MPI Parallelization Problems and Solutions - 22

Parallel ESSL (Dropped)
[This library is no longer supported by IBM documentation.]

Multifrontal Method
The multifrontal method is a very efficient way to solve sparse symmetric matrices with wide bands.

It is NOT, however, supported by IBM's Engineering and Scientific Subroutine Library (ESSL) or its
parallelized counterpart (PESSL). For a robust, easy to use, and high-performance set of multifrontal
subroutines, you should instead rely on the Watson Symmetric Sparse Matrix Package (WSSMP). WSSMP
documentation is available online at

http://www.research.ibm.com/mathsci/ams/ams_WSSMP.htm

WSSMP works either with threads on a shared-memory machine or as a scalable parallel solver in a
message-passing environment (such as the IBM SP).

MPI Parallelization Problems and Solutions - 23

http://www.research.ibm.com/mathsci/ams/ams_WSSMP.htm

MPI Performance Benchmarks
LLNL's Center for Applied Scientific Computing (CASC) now provides as publicly downloadable

code a C-language integrated parallel microbenchmark suite to conduct performance tests of MPI on many
different platforms (Compaq, IBM, SGI, and Sun). LLNL's MPI benchmark suite, called Sphinx, has these
features:

• Accesses each test action (such as message pingpong) through a function pointer, allowing different
threads or tasks to execute different functions at once. This supports measurement of highly complex
parallel actions.

• Times repeated calls (iterations) of each test action, stopping either when the standard deviation of
the repetitions becomes less than a user-specified percentage of their mean or, if that never happens,
after a user-specified maximum number of repetitions.

• (Optionally) corrects for test-suite ("harness") overhead and automatically warns if that overhead
exceeds the measurement value of the test.

• Is highly portable (vendor-dependent binding of POSIX threads to processors is the chief threat to
Sphinx portability).

• Covers (with suitable adaptations) pthreads, MPI, and OpenMP performance testing. Documentation
at the Sphinx web site (below) specifically explains which tests apply to which features of the three
approaches to parallelization.

Sphinx is available to the public at this open URL:

http://www.llnl.gov/CASC/sphinx

This Sphinx web site (UCLR-CODE-99026) provides all needed usage information and relevant files,
including:

• A descriptive inventory of every file in the current Sphinx distribution, which includes every input
file for the ASCI milepost tests.

• Build and execution instructions for the test suite.

• Input file format and the input modes that Sphinx accepts.

• Output file format and the four Sphinx output streams.

• Specific test descriptions and allowed independent variables.

• References to (and in some cases even the full text of) published papers that present and discuss
Sphinx results.

MPI Parallelization Problems and Solutions - 24

http://www.llnl.gov/CASC/sphinx

MPI Online Bibliography
This section critically summarizes, gives the URLs for, and interactively links to the best free online

information sources (some tutorial, some reference) about parallelization in general and MPI in particular,
culled from many unhelpful alternatives.

Cherri M. Pancake (Oregon State University)
Is Parallelism for You? Rules of Thumb for Computational Scientists and Engineers
http://web.engr.oregonstate.edu/~pancake/papers/IsParall.html (URL:
http://web.engr.oregonstate.edu/~pancake/papers/IsParall.html)
19 pages (HTML)

This is a basic, very lucid, and quite specific analysis of alternative aproaches to parallelization, aimed
at helping a scientist or engineer answer the title question about any planned parallel programming (or
conversion) project. Pancake offers 16 explicit rules of thumb for when and how to parallellize, based on
her systematic, illustrated comparison of:

• application characteristics: perfect or pipeline parallelism, fully or loosely synchronous applications.

• control models: single (SIMD) or multiple (MIMD) instructions for multiple data.

• memory models: shared memory, distributed memory, or shared-memory CPU groups combined
into larger distributed-memory machines (symmetric multiprocessors, SMPs).

• programming models: single or multiple executables participating in the parallel run.

Says Pancake, "the purpose and nature of your application are the most important indications of how
successful parallelization will be. Your choice of parallel computer and plan of attack will have significant
impact too, not just on performance but also [on] the level-of-effort required....the techniques I present for
estimating likely performance gains are drawn from the experiences of hundreds of computational scientists
and engineers at national labs, universities, and research facilities."

MPI Parallelization Problems and Solutions - 25

http://web.engr.oregonstate.edu/~pancake/papers/IsParall.html

Peter S. Pacheco (Univ. of San Francisco)
A User's Guide to MPI
ftp://math.usfca.edu/pub/MPI/mpi/guide.ps
51 pages (PostScript and PDF available)

Pacheco subsequently published a professional textbook called "Parallel Programming with MPI" (San
Francisco: Morgan Kaufmann, 418 pages, 1997), and this MPI guide is his freeware draft for that project
(at an anonymous FTP site). He describes it as "a brief tutorial introduction to some of the more important
features of MPI," and it contains C programming examples exclusively. Pacheco introduces the key MPI
library routines gradually throughout the text as he tours the main issues in parallel programming, including

• point-to-point communication (Send, Recv),

• collective communication (Bcast, Reduce),

• grouping exchanged data to minimize message traffic, and

• using grids and graphs to manage multiple MPI "communicators."

The analysis here is very clear but not very complete. The many examples all show how MPI routines
behave (in practice cases), but not how you might typically deploy them in large and complex application
codes.

A Fortran version of this guide is now available from Hong Kong University, but only in MS Word 7.0
(word processing) format, at this URL:
http://www.hku.hk/cc/sp2/ftp/mpi/MPI_ug_in_FORTRAN.doc (URL:
http://www.hku.hk/cc/sp2/ftp/mpi/MPI_ug_in_FORTRAN.doc)

MPI Parallelization Problems and Solutions - 26

http://www.hku.hk/cc/sp2/ftp/mpi/MPI_ug_in_FORTRAN.doc

Yukiya Aoyama
Jun Nakano
RS/6000 SP: Practical MPI Programming
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245380.pdf (URL:
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245380.pdf)
238 pages (PDF only)

This hefty manual "helps you write MPI (Message Passing Interface) programs that run on distributed
memory machines such as the RS/6000 SP," and thus it specifically addresses LC's AIX production
machines. It covers both C and Fortran codes (most examples are Fortran), and a 45-page appendix
conveniently reproduces example-enhanced MAN pages for every MPI library routine.

Aoyama and Nakano, on the staff at IBM Japan, have in this "redbook" (SG245380) achieved the often
conflicting goals of clear explanation and technically thorough treatment. Their introductory conceptual
chapters cover the same background topics as does Pacheco, only with more detail, more diagrams, and
more insight into the MPI library.

The bulk of the book deals with parallelization strategies, message passing as a solution to typical
communication problems, and advanced MPI programming (in code with complex dependencies). LC's
own MPI Parallelization Guide reflects the rich content and crisp structure of SG245380; it is a distillation
of that larger book's educational agenda (so we won't repeat it here). Aoyama and Nakano never flinch at
examining the intricate MPI problems posed by actual application programs, yet their cogent analysis and
often ingeniously clear illustrations keep the discussion effective and revealing.

This is certainly the most elaborate as well as the most helpful MPI manual now freely available online.
Lapses in English translation are rare and never serious (see also the next, more specialized, item).

MPI Parallelization Problems and Solutions - 27

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245380.pdf

Gary Mullen-Schultz
BlueGene/L: Application Development
http://www.redbooks.ibm.com/abstracts/sg247179.html (URL:
http://www.redbooks.ibm.com/abstracts/sg247179.html)
172 pages (HTML and PDF versions of the same text)

Although this manual also covers control system APIs and performance analysis, its largest part (Part I,
68 pages plus an appendix) addresses MPI application support on the unusual BlueGene/L architecture.
Chapters here discuss MPI code management on BlueGene/L more than strategic program design. Topics
include memory and link issues, coprocessor versus virtual-node mode, system calls, compiling and tuning
on BlueGene/L, running and debugging, and checkpointing to restart. From a fork at the (above) abstract,
both HTML and PDF versions of this book are available online.

Note that this IBM text assumes a BlueGene/L machine using LoadLeveler as the underlying job
manager. At LC, BlueGene/L uses instead the locally developed resource manager SLURM (URL:
http://www.llnl.gov/LCdocs/slurm) because the machine runs Linux/CHAOS rather than AIX as its operating
system.

Appendix D of this manual explains the role of four environment variables relevant to MPI codes but
unique to BlueGene/L:
BGLMPI_COLLECTIVE_DISABLE
BGLMPI_EAGER
BGLMPI_RVZ
BGLMPI_RZV

MPI Parallelization Problems and Solutions - 28

http://www.redbooks.ibm.com/abstracts/sg247179.html
http://www.llnl.gov/LCdocs/slurm

Blaise Barney
Message Passing Interface (ASC Support Training)
http://www.llnl.gov/computing/tutorials/mpi (URL: http://www.llnl.gov/computing/tutorials/mpi)
50 pages (HTML)

After 10 pages of background on "getting started with the message passing paradigm," this becomes
a systematic explanatory tour of the MPI library. Unlike Pacheco, Aoyama, and Nakano, this is not a
problem-oriented treatment of how to apply MPI to typical application-code challenges. Rather it is a
careful review of what programming resources the MPI library offers to the prospective parallel programmer,
organized by broad categories of routine.

For example, the "Environment Management" section gives the Fortran and C calling sequences for
all nine MPI routines (such as MPI_Init) in this category, with brief comparative comments on the role of
each. Typical uses appear in dozen-line Fortran and C code examples at the end of each section.
Supplementary tables cover MPI data types and MPI routine names alphabetically (always in functional
categories), where each name links to the corresponding MAN page for usage details. Also introduced
here are the extensions to the original MPI specifications found in MPI-2.

Barney's approach to MPI is very complete (as a library survey) and well balanced between C and
Fortran (unlike Pacheco). But it leaves complex application problems largely to the user (unlike the examples
of Aoyama and Nakano).

MPI Parallelization Problems and Solutions - 29

http://www.llnl.gov/computing/tutorials/mpi

Argonne National Laboratory
Message Passing Interface (MPI) Standard (site)
http://www-unix.mcs.anl.gov/mpi (URL: http://www-unix.mcs.anl.gov/mpi)
HTML with many links

Many web sites claim to provide MPI information and to gather useful MPI links. Most, however, point
to one another circularly, have poor annotation for their links, and add local material that is too meaningless
in isolation, too incomplete, or too disorganized to justify the time spent finding and reading it. Argonne
National Laboratory's (ANL) Mathematics and Computer Science Division stands apart, with a genuinely
useful, thorough, and fairly well organized collection of MPI postings and links. Other sites will eventually
lead you to ANL, so starting here will save hours of study time.

ANL's annotations spell out, especially below the top level of MPI topics, just how many relevant
resources are assembled here:

• Research papers on MPI,

• MPI software tools,

• MPI libraries,

• Tutorials and texts, including those summarized in this section (except the IBM redbook),

• The MPI official standard and FAQ, for completeness.

MPI users who want to bookmark one truly helpful "jump page" for future searches should find that
this one meet their needs better than most. (Note that even here, however, the quality of linked information
varies greatly.)

MPI Parallelization Problems and Solutions - 30

http://www-unix.mcs.anl.gov/mpi

LC Hotline Staff
MPI Use Summary
/usr/local/docs/MPI_Use_Summary
200-300 lines of plain text

On each LC IBM and Compaq massively parallel machine, the LC Hotline staff maintains a simple
200-to-300-line file that gives very current and very localized information on:

• The location of the executable compiler scripts available on that specific machine,

• The current correlation between script names (mpicc, old_mpicc, new_mpicc) and the compiler
version (MPICH-1.1.2, etc.) that each named script invokes,

• Hints about compiler options especially relevant to MPI programs on that machine, as well as about
the most important local MPI environment variables,

• A warning that MPICH is not thread safe, so its output must be single threaded,

• Short but explicit examples of how to locally compile C, C++ (various brands), Fortran77, and
Fortran90 with MPICH, and

• A brief comparison of MPICH with the native MPI compiler(s) on each specific machine.

Consulting this local help file along with LC's POE User Guide (URL: http://www.llnl.gov/LCdocs/poe)
provides solid practical context for managing, compiling, and executing the MPI programs whose design
is discussed in the manual that you are reading.

MPI Parallelization Problems and Solutions - 31

http://www.llnl.gov/LCdocs/poe

Terry Jones, LLNL
MPI at LLNL
http://www.llnl.gov/computing/mpi/index.html (URL: http://www.llnl.gov/computing/mpi/index.html)
15 pages (HTML)

This brief summary of MPI resources at LC begins with an overview of LLNL industrial collaboration
on MPI, on LLNL's role in the MPI specification, and on the names and addresses of half a dozen local
MPI contacts (for A and B divisions, for IBM problem resolution, etc.). Also here are announcements of
future MPI seminars at LLNL ("News and Events"), links to external resources, and MPI library loading
information for IBM, Compaq, and Quadrics-switch (Linux) environments. Some of the same online
reference material cited in this manual is cited on the "MPI at LLNL" pages too.

Because MPI sometimes interacts with other system features in unexpected ways, three other sections
of "MPI at LLNL" are quite helpful for problem debugging:

• Open Issues, Gotchas, and Recent Changes.
This subset of the site discusses how to deal with such issues as unexpected application hangs, switch
bugs that affect MPI subroutine calls, or whether or not to invoke "large (memory) pages" under
AIX.

• Glossary.
This section offers short definitions in alphabetical order of acronyms (and some technical terms)
that commonly but mysteriously appear in MPI discussions, from AMPI to VP.

• Environment Variables.
This section explains 21 LIBELAN_ environment variables that help MPI codes running on LC
Linux machines to make effective use of the Quadrics switch (for better performance and debugging)
through the Elan Communication Library. You may also want to see the general comparison of
locally used and MPI-relevant environment variables (on both AIX and Linux/CHAOS systems) in
LC's Environment Variables user manual (URL: http://www.llnl.gov/LCdocs/ev).

MPI Parallelization Problems and Solutions - 32

http://www.llnl.gov/computing/mpi/index.html
http://www.llnl.gov/LCdocs/ev

Jeffery Vetter, Chris Chambreau, LLNL
MPIP, MPIPVIEW (MPI Profiling)
http://www.llnl.gov/CASC/mpip (URL: http://www.llnl.gov/CASC/mpip)
12 pages (HTML)

MPIP (usually cited in reverse case as mpiP) is a locally developed and iteratively refined profiling
library specifically designed for MPI application programs. It generates much less overhead and data than
standard tracing tools, and it uses communication only to generate its output report. MPIP works under
Linux (including BlueGene/L), Tru64, and AIX systems. The output GUI, called MPIPVIEW, has even
been optimized to support display of the huge output files made on BlueGene/L. The project's very concise
and well-organized explanatory website (URL listed above) offers:

• downloads of the latest version of MPIP,

• very explicit linking instructions, both generally and with specific examples for each LLNL platform
(combination of operating system and compiler),

• an explanatory summary of the available MPIP configuration options (currently about a dozen),

• an index of MPI routines that MPIP profiles (sorted alphabetically),

• an index of MPI routines for which MPIP gathers sent-message size data, and

• an index of MPI routines for which MPIP gathers I/O data.

MPI Parallelization Problems and Solutions - 33

http://www.llnl.gov/CASC/mpip

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2007 The Regents of the University of California. All rights reserved.

MPI Parallelization Problems and Solutions - 34

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 37).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where these programs run.
who Who to contact for assistance.

introduction Intended role of this MPI manual.

effects How parallelization affects speed.
amdahls-law Upper bound on parallel speedup.
bandwidth Comm. efficiency among processes.
speedup Maximizing program speedup.

strategies How to parallelize a code.
parallelization-steps Steps for successful parallelization.

tune Tuning a serial code.
profile Profiling a serial code.
choose-techniques Choosing best parallel techniques.
deploy-techniques Deploying parallel techniques.

troubleshooting Typical symptoms and their causes.
performance Speedup complexities and suggestions.

i-o How to make I/O parallel.
i-o-input Input to parallel processes.
i-o-output Output from parallel processes.

do-loops How to parallelize DO loops.
iteration-distribution Spreading iterations among processes.

block Assigning iterations in equal blocks.
cyclic Assigning iterations one at a time.
block-cyclic Using round-robin block assignment.

memory-use Exploiting memory added per process.
nested-loops Efficient nested-loop parallelization.

message-passing Data distribution using MPI.

no-order-dependencies When iterations are order independent.
element-broadcast One data element to all processes.
fdm-1d 1-D finite difference method.
bulk-data Many data elements distributed.
gather-data Gathering data to one process.
synchronize-data Coordinating data among processes.
transpose-data Block column-wise to row-wise.

reduction Gathering and processing data at once.
reduce-data MPI_REDUCE, ALLREDUCE compared.
superposition MPI_REDUCE without derived data types.

order-dependencies When interations are order dependent.
nested-loops-2 Specific nested-loop techniques.
pipeline Flow dependence, one dimension.

MPI Parallelization Problems and Solutions - 35

twisted-decomposition
 Flow dependence, two dimensions.

nonnested-loops Specific nonnested loop techniques.
prefix-sum MPI_SCAN over many processes.

advanced-mpi Typical app programs with MPI.
fdm-2d 2-D finite difference mathod.
finite-element Finite element method.
lu-factorization LU (lower-upper) matrix factorization.
sor Successive over-relaxation method.
monte-carlo Parallelizing random number use.
molecular-dynamics Molecular dynamics parallelization.
mpmd Multiple programs multiple data cases.
multifrontal An efficient sparse-matrix method.

benchmarks Microbenchmark suite for MPI.

references Suggested MPI online references.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

MPI Parallelization Problems and Solutions - 36

Alphabetical List of Keywords

Keyword Description
------- -----------

a The alphabetical index of keywords.
advanced-mpi Typical app programs with MPI.
amdahls-law Upper bound on parallel speedup.
availability Where these programs run.
bandwidth Comm. efficiency among processes.
benchmarks Microbenchmark suite for MPI.
block Assigning iterations in equal blocks.
block-cyclic Using round-robin block assignment.
bulk-data Many data elements distributed.
choose-techniques Choosing best parallel techniques.
cyclic Assigning iterations one at a time.
date The latest changes to this document.
deploy-techniques Deploying parallel techniques.
do-loops How to parallelize DO loops.
effects How parallelization affects speed.
element-broadcast One data element to all processes.
entire This entire document.
fdm-1d 1-D finite difference method.
fdm-2d 2-D finite difference mathod.
finite-element Finite element method.
gather-data Gathering data to one process.
i-o How to make I/O parallel.
i-o-input Input to parallel processes.
i-o-output Output from parallel processes.
index The structural index of keywords.
introduction Intended role of this MPI manual.
iteration-distribution Spreading iterations among processes.
lu-factorization LU (lower-upper) matrix factorization.
memory-use Exploiting memory added per process.
message-passing Data distribution using MPI.
molecular-dynamics Molecular dynamics parallelization.
monte-carlo Parallelizing random number use.
mpmd Multiple programs multiple data cases.
multifrontal An efficient sparse-matrix method.
nested-loops Efficient nested-loop parallelization.
nested-loops-2 Specific nested-loop techniques.
no-order-dependencies When iterations are order independent.
nonnested-loops Specific nonnested loop techniques.
order-dependencies When interations are order dependent.
parallelization-steps Steps for successful parallelization.
performance Speedup complexities and suggestions.
pipeline Flow dependence, one dimension.
prefix-sum MPI_SCAN over many processes.
profile Profiling a serial code.
reduce-data MPI_REDUCE, ALLREDUCE compared.
reduction Gathering and processing data at once.
references Suggested MPI online references.
revisions The complete revision history.
scope Topics covered in this document.
sor Successive over-relaxation method.
speedup Maximizing program speedup.

MPI Parallelization Problems and Solutions - 37

strategies How to parallelize a code.
superposition MPI_REDUCE without derived data types.
synchronize-data Coordinating data among processes.
title The name of this document.
transpose-data Block column-wise to row-wise.
troubleshooting Typical symptoms and their causes.
tune Tuning a serial code.
twisted-decomposition Flow dependence, two dimensions.
who Who to contact for assistance.

MPI Parallelization Problems and Solutions - 38

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
25Jun07 performance NUMA hardware performance issues noted.

i-o-output CHAOS 3.2 has SLURM flush Lustre page cache.

24Jan07 performance Environment variable suggestions added.

26Jun06 introduction Cross ref to MPIRUN manual added.
deploy-techniques

 Cross ref to MPIRUN manual added.

03May06 references MPIP, MPIPVIEW subsection added.

22Feb06 introduction LD_LIBRARY_PATH cross ref added.
references Cross ref to Env Var manual added.

14Nov05 pessl Library support dropped by IBM.
references BlueGene/L MPI reference added.
index PESSL entry deleted.

27Sep05 i-o-output More MPI-IO/Lustre interaction details.
references Details updated.

09Mar05 deploy-techniques
 Warning on unsetting MALLOC variables.

references LIBELAN_ ent. vars. cross referenced.

16Feb05 i-o-output MPI-IO and Lustre interaction warning.

10Jan05 references Problems, glossary added to "MPI at LLNL."

08Mar04 references Several MPI URLs updated.

02Sep03 performance Revised analysis of AIX performance probs.
profile Support for mpiP profiler added.

20Aug02 i-o-input Another cross ref. added.
i-o-output MPI-IO discussion added.
introduction Cross ref to I/O Guide added.

25Jul02 i-o-input Cross ref on parallel input from HDF5.
i-o-output Cross ref on parallel output to HDF5.
references Local MPI contact page added.

06May02 performance MPI_ALLREDUCE performance problem noted.
reduce-data Cross reference added to problem.

15Oct01 introduction Cross ref to POE Guide added.
references Local MPI help file added.

11Jun01 benchmarks New section on Sphinx benchmarks.
index New keyword for new section.

20Feb01 introduction Cross ref added to LC's Pthreads manual.

MPI Parallelization Problems and Solutions - 39

14Aug00 references IBM site now requires registration.
scope New printing instructions.

10Nov99 references Best MPI references added.
 entire All MPI routines linked to MAN pages.

25Oct99 entire First draft edition of this document.

TRG (25Jun07)

UCRL-WEB-200945
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (25Jun07) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

MPI Parallelization Problems and Solutions - 40

http://www.llnl.gov/disclaimer.html

	Preface
	Introduction
	Parallelization Effects
	Amdahl's Law
	Effective Bandwidth
	Speedup

	Parallelization Strategies
	Basic Parallelization Steps
	Tune
	Profile
	Choose Techniques
	Deploy Techniques

	Troubleshooting
	Performance Measurements

	Parallelizing I/O Operations
	Input Cases
	Output Cases

	Parallelizing DO Loops
	Distributing Iterations Among Processes
	Block Distribution
	Cyclic Distribution
	Block-Cyclic Distribution

	Using Extra (Per-Node) Memory
	Parallelizing Nested Loops

	Message Passing
	No Order Dependencies
	Broadcast of a Single Element
	1-D Finite Difference Method Parallelized
	Bulk Data Transmissions
	Gathering Data to One Process
	Synchronizing Data
	Transposing Block Distributions

	Reduction Operations
	General Reduction
	Superposition

	Order Dependencies
	Nested Loops
	Pipeline Method
	Twisted Decomposition

	Nonnested Loops
	Prefix Sum Method

	Advanced MPI Programming
	2-D Finite Difference Method
	Finite Element Method
	LU (Lower-Upper) Factorization
	SOR (Successive Over-Relaxation) Method
	Monte Carlo Method
	Molecular Dynamics
	MPMD Models
	Parallel ESSL (Dropped)
	Multifrontal Method

	MPI Performance Benchmarks
	MPI Online Bibliography
	Disclaimer
	Keyword Index
	Alphabetical List of Keywords
	Date and Revisions

